ICANS XX, 20th meeting on Collaboration of Advanced Neutron Sources March 4 – 9, 2012 Bariloche, Argentina ## Polarization Analysis Neutron Spectrometer Project at J-PARC T. Yokoo^{1,9*}, K. Ohoyama², S. Itoh^{1,9}, K. Iwasa³, H. Hiraka², M. Fujita², M. Matsuura², H. Kimura⁴, K. Tomiyasu³, T. Sato⁵, T.J. Sato⁶, T. Arima⁷, T. Ino^{1,9}, H. Kira⁸, Y. Sakaguchi⁸, T. Oku⁹, Y. Arimoto¹, J. Suzuki¹⁰, H.M. Shimizu^{1,9}, M. Takeda⁹, K. Kaneko⁹, M. Hino¹¹, S. Muto^{1,9}, H. Nojiri² ¹IMSS, High Energy Accelerator Research Organization (KEK), ²IMR, Tohoku Univ., ³Dept. Physics, Tohoku Univ., ⁴IMRAM, Tohoku Univ., ⁵WPI AIMR, Tohoku Univ., ⁶ISSP, Univ. of Tokyo, ⁷Dept. Advanced Material Science, Univ. of Tokyo, ⁸QBS, JAEA, ⁹MLF, JPARC, ¹⁰CROSS, 11KUR, Kyoto Univ. *e-mail address : tetsuya.yokoo@kek.jp ## **Abstract** KEK and Tohoku Univ. are advancing a project to construct a polarization analysis neutron spectrometer at J-PARC. Since there exist a few polarised neutron spectrometers in pulsed neutron facilities in the world, this spectrometer will be a key instrument to generate breakthroughs in novel material science in the high-power spallation neutron era. Since this project has many technical problems, in particular, feasibility of spin analysers with a large solid angle, we will move ahead this project in incremental phases: the first phase, a fan-type supermirror device will be used as the analyser, meaning that the energy range is focused below ΔE~20meV in the first phase. In the second phase, by developing SEOP analysers, we will be able to observe excitations in Ei~100meV region. We also will aims at observing in Ei~300meV region in the final phase. For arriving at higher energy regions, with high stability, a SEOP type polariser will be used, which is now developing under collaborations with JAEA, KEK and Tohoku Univ. Basic performances have been estimated: the polarised neutron flux is expected to be 1.1E+5 (n/s/cm²/meV) at 100meV, and energy resolution as a conventional Fermi chopper machine to be 5% of $\Delta E/E_i$ under the optimized condition. One of the characteristic points of this project is "the cross correlation method", by which neutrons with many different Ei can be used at once; thus much enhancement of efficiency will be expected, while resolution and analytic accuracy of profile will be partly lost.